Introduction to ForgeRock DevOps – Part 2 – Building Docker Containers

We have just launched Version 5 of the ForgeRock Identity Platform with numerous enhancements for DevOps friendliness. I have been meaning to jump into the world of DevOps for some time so the new release afforded a great opportunity to do just that.

Catch up with previous entries in the series:

I will be using IBM Bluemix here as I have recent experience of it but nearly all of the concepts will be similar for any other cloud environment.

Building Docker Containers

In this blog we are going to build our docker containers that will contain the ForgeRock platform components, tag them and upload them to the Bluemix registry.


Install all of the below:

Used to build, tag and upload docker containers.
Bluemix CLI:
Used to deploy and configure the Bluemix environment.
CloudFoundry CLI:
Bluemix dependency.

Deploy and manage Kubernetes clusters.

Initial Configuration

1. Log in to the Blue Mix CLI using you Blue Mix account credentials:

bx login -a

Note we are using the US instance of Bluemix here as it has support for Kubernetes in beta.

When prompted to select an account ( just type 1) and if you are logged in successfully you should see the above. Now you can interact with the Bluemix environment just as you might if you were logged in via a browser.

2. Add the Bluemix Docker components:

bx plugin repo-add Bluemix plugin install container-service -r Bluemix
bx plugin install IBM-Containers -r Bluemix

Check they have installed:

bx plugin list

3. Clone (or download) the ForgeRock Docker Repo to somewhere local:

4. Download the ForgeRock AM and DS component binaries from backstage:

5. Unzip and copy ForgeRock binaries into the Docker build directories:


cp openam/AM-5.0.0.war /usr/local/DevOps/stash/docker/openam/


mv /usr/local/DevOps/stash/docker/openam/opendj.zipcp openam/AM-5.0.0.war /usr/local/DevOps/stash/docker/openam/


mv /usr/local/DevOps/stash/docker/amster/

For those unfamiliar, Amster is our new RESTful configuration tool for AM in the 5 platform, replacing SSOADM with a far more DevOps friendly tool, I’ll be covering it in a future blog.

Build Containers

We are going to create three containers: AM, DJ & Amster:

1. Build and Tag OpenAM container ( don’t forget the . ) :

cd /usr/local/DevOps/stash/docker/openam
docker build -t wayneblacklockfr/openam .

Note wayneblacklockfr/openam is just a name to tag the container with locally, replace it with whatever you like but keep the /openam.

All being well you will see something like the below:

Congratulations, you have built your first ForgeRock container!

Now we need to get the namespace for tagging, this is usually your username but check using:

bx ic namespace-get

Now lets tag it ready for upload to Bluemix, use the container ID output at the end of the build process and your namespace

docker tag d7e1700cfadd

Repeat the process for Amster and DS.

2. Build and Tag Amster container:

cd /usr/local/DevOps/stash/docker/amster
docker build -t wayneblacklockfr/amster .
docker tag 54bf5bd46bf1

3. Build and Tag DS container:

cd /usr/local/DevOps/stash/docker/opendj
docker build -t wayneblacklockfr/opendj .
docker tag 19b8a6f4af73

4. View the containers:

You can take a look at what we have built with: docker images

Push Containers

Finally we want to push our containers up to the Bluemix registry.

1. Login again:

bx login -a

2. Initiate the Bluemix container service, this may take a moment:

bx ic init

Ignore Option 1 & Option 2, we are not doing either.

3. Push your Docker images up to Bluemix:

docker push

docker push

docker push

4. Confirm your images have been uploaded:

bx ic images

If you login to the Bluemix webapp you should be able to see your containers in the catalog:

Next Time

We will take a look at actually deploying a Kubernetes cluster and everything we have to do to ready our containers for deployment.

This blog post was first published @, included here with permission from the author.

Introduction to ForgeRock DevOps – Part 1

We have just launched Version 5 of the ForgeRock Identity Platform with numerous enhancements for DevOps friendliness. I have been meaning to jump into the world of DevOps for some time so the new release afforded a great opportunity to do just that.

As always with this blog I am going to step through a fully worked example. In this case I am using IBM Bluemix however it could just as easily have been AWS, Azure. GKE or any service that supports Kubernetes. By the end of this blog you will have a containerised instance of ForgeRock Access Management and Directory Services running on Bluemix deployed using Kubernetes. First off we will cover the basics.

DevOps Basics

There are many tutorials out there introducing dev ops that do a great job so I am not going to repeat those here I will point you towards the excellent ForgeRock Platform 5 DevOps guide which also takes you through DevOps deployment step by step into Minikube or GKE:

What I want to do briefly is touch on some of the key ideas that really helped me to understand DevOps. I do not claim to be an expert but I think I am beginning to piece it all together:

12 Factor Applications: Best practices for developing applications, superbly summarised here this is why we need containers and DevOps.

Docker: Technology for building, deploying and managing containers.

Containers: A minimal operating system and components necessary to host an application. Traditionally we host apps in virtual machines with full blown operating systems whereas containers cut all of that down to just what you need for the application you are going to run.

In docker containers are built from Dockerfiles which are effectively recipes for building containers from different components. e.g. a recipe for a container running Tomcat.

Container Registry: A place where built containers can be uploaded to, managed, downloaded and deployed from. You could have a registry running locally, cloud environments will also typically have registries they will use to retrieve containers at deployment time.

Kubernetes: An engine for orchestrating deployment of containers. Because containers are very minimal, they need to have extra elements provisioning such as volume storage, secrets storage and configuration. In addition when you deploy any application you need load balancing and numerous other considerations. Kubernetes is a language for defining all of these requirements and an engine for implementing them all.

In cloud environments such as AWS, Azure and IBM Bluemix that support Kubernetes this effectively means that Kubernetes will manage the configuration of the cloud infrastructure for you in effect abstracting away all of the usual configuration you have to do specific to these environments.

Storage is a good example, in Kubernetes you can define persistent volume claims, this is effectively a way of asking for storage. Now with Kubernetes you do not need to be concerned with the specifics of how this storage is provisioned. Kubernetes will do that for you regardless of whether you deploy onto AWS, Azure, IBM Bluemix.

This enables automated and simplified deployment of your application to any deployment environment that supports Kubernetes! If you want to move from one environment to another just point your script at that environment! More so Kubernetes gives you a consistent deployment management and monitoring dashboard across all of these environments!

Helm: An engine for scripting Kubernetes deployments and operations. The ForgeRock platform uses this for DevOps deployment. It simply enables scripting of Kubernetes functionality and configuration of things like environment variables that may change between deployments.

The above serves as a very brief introduction to the world of DevOps and helps to set the scene for our deployment.

If you want to following along with this guide please get yourself a paid IBM Bluemix account alternatively if you want to use GKE or Minikube ( for local deployment ) take a look at the superb ForgeRock DevOps Guide. I will likely cover off Azure and AWS deployment in later blogs however everything we talk about here will still be relevant for those and other cloud environments as after all that is the whole point of Kubernetes!

In Part 2 we will get started by installing some prerequisites and building our first docker containers.

This blog post was first published @, included here with permission from the author.